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The framework of the linear mechanics of liquid crystal media [ 11 is used to 
study propagation of waves in a layer of a nematic liquid crystal (NLC) on an 
inclined plane, in a magnetic field, for three different cases of orientation ofthe 

anisotropy axis, namely orthogonal to the inclined plane, parallel to the inclined 
plane and orthogonal to the plane of flow. Such orientations of the anisotropy 
axis are realized in practice in the course of special machining of solid surfaces 

[2]. Exact solutions of the equations of motion are obtained describing the steady 

flow of the layer, and the behavior of small plane perturbations is studied. It is 
shown that two types of plane waves can propagate in a layer of the nematic 

mesophase, namely, the surface and the orientational waves. In the case of long 

surface waves the formulas for the critical Reynolds number are obtained. For 

the orientational waves a sufficient criterion of stability of the flow in the layer 

is obtained for two cases. The influence of the magnetic field and of the rheo- 

logical parameters of NLC on the character of propagation of the first and second 

type waves is investigated. 
From amongst the papers dealing with wave propagation in NLC, we draw the 

readers’ attention to [S] which deals with the longitudinal, shear and torsional 
waves in a liquid crystal domain and obtains the corresponding dispersion rela- 

tionships. 

1. Equationr of motion of NLC. Let us write the equations of motion of 

the incompressible nematic mesophase in the dimensionless form, for the case when the 

angle between the axes of nematic orientation is small [1] 
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Here x1, ~a, 2s and t are the dimensionless Cartesian coordinates and time; vi are 
the components of the velocity vector and p is pressure relative to U, and pva2, respec- 
tively ; Li are the components of the unit anisotropy vector, w is the mean rate of ro- 

tation of molecules about their central axes parallel to L and relative to v,h-l; ql, 

Tz7 * . *7 q10 are the viscosity coefficients ; J, and J 1, are constants characterizing 

the local moments of inertia of the medium ; d1212, d1221, d,,,g and d1s13 are the mo- 
duli of elasticity; p is density, ZIP is the characteristic velocity ; h is the characteris- 

tic dimension ; fi and mi are the components of the volume force vector and the volume 

momentum, respectively. 
The equations of the linear mechanics of NLC given above are written in the coordi- 

nate system , the axis zs of which is directed along the L-axis in the undeformed state 
[ 11. Therefore in all the cases which follow the homogeneous magnetic field of strength 
H which preserves the orientation of the L-axis, will be assumed as directed along the 

za -axis. 

2. Anftotropy axlo orthogonal to the inclined plane. Let us con- 
sider a layer of nematic mesophase of thickness h, flowing down the inclined plane 

under the gravity. We assume that near the solid surface the longitudinal axes of the 
NLC molecules are oriented along the normal to this surface. Let us introduce the right 

Cartesian Xl, Z2, x3 coordinate system with the origin at the layer surface, the X2- and 

2s -axes directed along a line of steepest descent and inside the fluid, respectively. Then 
the equations of motion (1.1) admit the following exact solution describing a steady flow 

in the layer: O 
s/2 (1 - 532), p" = 363R-1x3 ctg y + pa (pva2)-1 

L,O 2 3/>e11? (6, + a4 - 62) [(m ch m)-’ (m - sh m)ch mz3 + 
(2.1) 

m-l sh mz3- z,l 
w” =o, x = Axql-“H2ph2, Ax =x11 -XL 
m = hH (Axd1313-1)11~, ZJ, = 1/3pgq3-1h2 sin y 

Here y is the angle of inclination of the plane to the horizon, pa is the atmospheric 

pressure, g is acceleration due to gravity and Ax is the anisotropy of the magnetic 
susceptibility. The solution (2.1) is obtained under the boundary conditions of adhesion 
at the solid surface and the absence of the torque and shearing stresses at the free surface. 
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Let us investigate the stability of the steady flow with respect to small periodic per- 
turbations. 

We note that the Squire’s theorem [4] holds for the orientation of the anisotropy axis 
defined above. To prove this it is sufficient to write the equations of motion linearized 

in the usual manner [5] and the boundary conditions for the NLC layer in a coordinate 
system obtained from the initial system by rotating it about the r,-axis in such a man- 

ner that the &-axis of the new system is orthogonal to the expansion front of the 
three-dimensional wave. At the same time we find that the equations controlling the 
stability correspond to a plane flow of the layer with the velocity profile VZO cos 13, 

where $ is the angle between the x2 - and x2’-axes. For this reason we only need to con- 
sider the plane perturbations while investigating the stability. 

Let us denote by Q’, &‘, L2’, u!, v’ and W’ the corresponding perturbations in the 
natural angular velocity of rotation of the molecules and the projections of the unit ani- 
sotropy vector and the velocity vector on the x1, ~a, 2s coordinate axes. It can easily 
be shown that in the case of plane perturbations the linearized equations of motion and 
the boundary conditions can formally be separated into two independent groups defining 

the behavior of the perturbations v’, w’, L,’ and u’, L1’, co’ , respectively. From the 

physical point of view this means that two unconnected kinds of plane waves may pro- 

pagate in the layer of the nematic mesophase. Let us set 

(2.2) 

L,’ .z L2* (q) ei~(xz-~lf), L1’ = L1* (Q) eiaCx,-rdi 

u’ = u* (x3) ,iJ(wd), 0)’ :- a* (q) ,ia(.r,-cd) 

Here cp, L2*, L1*, U* and o* are complex amplitudes of the perturbations, + is the 

stream function and a is a dimensionless wave number, while c, and c_, are the com- 
plex velocities of propagation of the first and second type waves. Then we have the fol- 
lowing two boundary value problems for the complexwave amplitudes 

ia(6, + 64 - &)(CI - U~"(O))L2*(0) =O 
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a (36, ctg 7 + CAY) ,,” $(6) + a+(O) @$$ - (V2”(0) - cr)Zl+ 

+ia2 (2 + 6, + a3 - 6, - 4& + 26, + 2&) ‘2 - i6, ‘3 - 

; a (6, + sq - 6,) [fp (v,“(O) - Cl) + L,* (0) y - 

( v (0) 7 
d2Lz0 (0) + dq (0) Go (0) 

-a723 da )I =o, S'=HS 
im"(u,"- cg) = R-’ (6, ;j - A*) + iaG,R%* - (2.4) 

S iaRe (6, + t& - 62) r$$ (UC - ~2) + Ll* $$I 

L1* QX + a2 (B, + &) + iaRGp (uzo - c2)] - B, d% - 
dx3~ 

$ R (63 + 6, - 6%) ‘g = 0 

6 
cl%!J* 

lo dx$= 
- - a26,0* - b5 (iau* + 20*) = 0 

do* (0) u* (1) = L1” (1) = o* (1) = q = --&- = o 

2& ‘2 + ia (15, + t& - 6,) (ctL - 2720 (O))'L,* (0) = 0 

Here S is the coefficient of surface tension relative to pva2h. In the course of deriving 

(2.3) and (2.4) it was assumed that J L = J 11 = 0, which is physically justified for 

the NLC media [l] by virtue of the smallness of the local moment of inertia. 

Equations (2.3) correspond to the u’, w’, L,’ perturbation wave which by its nature, 

is analogous to a surface perturbation wave in an ordinary viscous fluid. On the contrary, 

the u’, &‘, o’ perturbation wave has no relation to any distortion of the free surface 

and is of predominantly orientational character, In a wave of this type the oscillatory 

translations of the molecules in the zr direction vary periodically with respect to x2 and 

time. The molecules rotate about their long axes of inertia as well as about the x2 direc- 
tion. The possibility of propagation of such waves depends essentially on the presence 

of the rotational degrees of freedom in the liquid crystal and on the anisotropic structure 

of the NLC media. 
Let us study the behavior of the long-wave surface perturbations, using the method of 

consecutive approximations [6, 71 to solve the boundary value problem (2.3). Restrict- 
ing ourselves to the first two approximations, we write cp, L,* and cl in the form 

‘p = ‘PO + q1, L,* = lo + al,, Cl = Cl0 + UC{ (2.5) 

Substituting (2.5) into (2.3) we obtain the following expressions for the zero approxima- 

tion : 
‘PO = (23 - 1J2, 1, = R (x ch m)-’ (6, + i34 - 6,) x (2.6) 

{[(m - sh m)th m - llch mx3 - (m - sh m)sh mz3 + ch m} 
Cl0 = 3 

The next approximation gives the following expression for c’r : 
c1’ = i {6,-lR PI8 (x ch m)-l(6, + 6, - 62)2@ Cm) + 6/51 - ctg y} (2.7) 
Q(m) =ll,mQ, + m2D, - msh m(D1 + D, + D5) + mD, - 

(chm f ‘12m2 - l)(D, -D 5) - mchm(D, + D4) + D,shm 



982 S.P.l.evitskii end A.T.Listrov 

D, = rn- &a - sh m)th m + ch m - $1 
Ls a = --4m-3 t(m - shm)ft,hmfli,m)+chm-If 
D, = -2m-2 ch m, D4 = 4ms3 ch m 
DG =(6+ma)m-4[(m-shm)thm+chm-ll +4m”3(m-shm) 

This at once yields the formula for the critical Reynolds number 

RI* = 8, tl + 15~,&&m2 ch m)-l (6, + 8, - s,)“@ (m)f-“R,* (2, q 

where &* = ‘/IJC& Y is the critical Reynolds number for a layer of an isotropic 
Newtonian fluid [63. 

Let us f&d the order of quantities entering (2.8). As we know from El], the case when 

the angle between the axes of the nemaric order is small, requ&es a sufficiently large 
magnetic field, Since for the NLC media we have Bx - 10W8 cm”/g and d,,,, - 
10-6 dynes, then m - H and must also be large. It can easily be shown that when m 
increases, the expression (ma ch m)-1 4, (m) -+ --O as m+. Consequently, assuming 
that the viscosity qI --- IO+ poises, we obtain B, - IO-2 which implies that a mag- 
netic field of several hundred oersteds is sufficient for i (Bgn? ch m)-’ cf, (m) 1 .:c 1. 
Since by virtue of the anisotrop~c character of viscosity of the NLC 6, 2 2 [I, 21, the 

coefficient accompanying Ro* in (2.8) is always greater than unity. This means that 

the flow of the NLC layer under the specified orientation of the anisotropy axis is always 
more stable with respect to the surface ~~u~bations than the flow of a layer of Newton- 

ian fluid, An increase in the strength of magnetic field reduces the value of Iis*. At 

the same time fim RI* = S&s*+ which agrees with the result obtained in [S], namely, 

that when H -+ co, the flow of nematic medium becomes identical to that of an ordi- 

nary Newtonian fluid of viscosity vs. 
The destabilizing influence of the magnetic field on the behavior of the surface per- 

turbations can be explained as follows. The hydrodynamic flow exerting a significant 

orienting influence on the structure of the NLC causes a non~~form orientation of the 

molecules across the layer thickness. In the =case when the angle between the axes of 

nematic order is small. which was considered above, the deviation of the orientarion of 

the liquid crystal molecules in a steady flow from the orientation prevailing near the 

solid surface, is determined by the quantity L,‘. On the contrary, the magnetos field 

acting in the direction parallel to the ani~otropy axis near the wall, tends to produce a 

uniform orientation of the molecules right across the flow and thus exerts a compering 
infiuence, This leads to reduction in the hydr~ynam~c stability of the flow with respect 
to the surface perturbations. 

From (2.8) it follows that increasing the modulus of elasticity d13r3 reduces the value 

of RI”- Consequently the elasticity of NLC affects the stability ot the fiow just as the 
magnetic field does. On the contrary, increasing the value of the viscosity coefficient 

?j a stabilizes the flow. 
jet us turn our attention to the boundary value problem (2.4) for the ampEtudes of 

the orientational type ~rt~bations. Formal application of the algorithm of the asymp- 

totic expansions [6, ‘?I in the wave number M to the system (2.4) does not produce the 
desired result, as the zero, first and all further a~~xima~ons to the ~~~bat~o~ ampli- 
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tudes are identically zero. However, using the approach analogous to the Synge’s method 
in the theory of hydrodynamic stability of a viscous fluid [4], we can obtain a sufficient 
condition for the stability of the NLC flow relative to the orientational waves. Let US 

multiply the second equation of (2.4) by Li*, which is the complex conjugate of ,!&*, 

and integrate the result in xs from zero to one. Separating the real part of the resulting 

expression we obtain 

6,Irc,i = u-1 
I 

$ (6s + 6, - 6,) J (2 z,* + d$&*) &a - (2.9) 

R-l [XII + aa (6 + &) Ii ; UI} 

1 

Ia = 

0 0 
Here c2 i is the imaginary part of the complex wave velocity c2. Using the estimate 

we obtain from (2.9) the following condition of attenuation of the orientational waves 

R<min 2[x+ a”(&+ B5)] II+ 2&12 

(63 + 64- 62)13 
(2.10) 

Thus, when theReynolds number is sufficiently small, the orientational type perturba- 
tions attenuate. In addition, as we see from (2.9) the magnetic field and the elasticity 

of the liquid crystal are stabilizing factors. Consequently the magnetic field as well as 
the elasticity of NLC exert a reverse influence on the development of the corresponding 

surface and orientational type perturbations. 

3. Axis of anisotropy parallel to the inclined plane. Considerthe 
case when the axis of anisotropy of NLC is situated in the plane of flow near the solid 
surface, and is parallel to this surface. Let the 2s -axis be directed along the line of the 

steepest descent, and the x,-axis along the normal to the solid surface inside the fluid. 
Using this coordinate system we find, that the steady flow of the layer is described by the 
following solution of the equations of motion (1.1): 

V3O = v2 (1 - X12), p" = 3&R-lx, ctg y + pa (~“a~)-~ (3. I) 

L,o = 3/2~-1R(62 + 6, - 6,) bn,(ch ml)-’ (sh ml - ml) ch ml XI - 
ml-l sh mlxl + x,1 

a0 = 0, m, = hH (Axd,,l,-l)‘/~, v, = 1/3pgq2-1h2 sin y 

Let us study the behavior of the small perturbations independent of the coordinate zs. 
As in the previous case in which the axis of anisotropy is orthogonal to the inclined plane, 
the linearized equations of motion and the boundary conditions for the perturbations can 

be separated into two mutually independent groups corresponding to the surface waves 
and the orientational waves. Retaining the previous notation for the perturbations, we set 

a+ 
u’= alq’ 9 = cp (zl) ,ir (x3-ciQ 

(3.2) 
L1’ = L1* (x1) eia (+3-CIO, La’ = La* (x1) eia k--G20 

u’ = u* (x1) eia (X.+9), 0’ = m* (x1) eia (wd) 
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and again construct two bo~da~ value problems, the problem corresponding to the SLIP 
face U’, w’, L,’ ~rt~batiou wave and the problem ~~s~nd~ng to the o~e~tational 
;, L,‘, 6~’ perturbation wave. If we take the equations of the boundary value problem 

for the amplitudes of the surface perturbations and replace the parameters ~~~~~~ r2 

by dlsla, ?j3 and vice versa, the resulting equations become the boundary value prob- 
lem (2.3). Therefore, using the results of Sect, 2, we obtain the following expression for 

the critical Reynolds number of the flow in question : 

I&* = 6, 14 -4- 15j1, (B,m12 ch ml)-” (6, + a4 - 6,)2@ (ml)]-‘Ho* (3.3) 

The effect of the magnetic field and the modulus of elasticity on the above relation was 

discussed previously. We only note that li mtr,,K2* =:- 6&,,* which also agrees with 

the result of [8]. 

The boundary value problem for the amplitudes of the orientationa~ ~~t~bat~ons can- 

not be reduced to Eqs. (2.4), and must be considered separately. The problem has the 
form 

(B5 + &) $$ - [x + CCsB, + iaH& (UC - c,)] L2* + (3.4) 

;istR(6,+6,-&)U* =O 

f3.5) 

(3.6) 

do* (0) dLz* (0) L,*(l) = v* (1) = w* (1) := -.-&- =: _ = 
dxl 

() (3.7) 

ai9 (0)/c& - 6,o” (0) = 0 

Applying to (3.4) the case discussed in Sect. 2, we obtain the following sufficient crite- 

rion of stability of the flow with respect to the orientational waves: 

aR < min 
{ 

2 j(B5 + &) 14 +(x -~o~&)15f 

(63 + 84 -” 62) 16 1 
(3.8) 

1 

14 = 
\I I 
. aX 2axl, 

0 lfxl 

I, = +, Lz* pIxl, 
s 

1, = ?, v* 11 Lz* 1 &xl 
s 

0 0 

From (3.8) it follows that an interval of variation in the values of a and R for which 
the orientational type perturbations decay, always exists. The dimensions of this inter- 
val increase with the increasing values of the moduli of elasticity of NLC and the mag- 

netic field strength. 
Let us consider the behavior of the long orientational waves in the case when the CO- 

efficients of rotational viscosity 6 s is negligibly small fl]. multiplying (3.6) by v* 
and integrating in ~from zero to one,with the boundary conditions taken into a=olltlt, 

we obtain (neglecting the terms containing a2): 

aRTBczi = - I7 - iaR { (~30 - car) 1 v* 1' dxl 
0 

(3.9) 
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Here czr is the real part of the wave velocity ca. The imaginary part of (3.9) gives 

aR i (u,” - c2’) 1 u* j2dXl = 0 
0 

from which it follows that the difference ~a’ - cZr changes its sign in the interval 

(0, 1). Consequently the velocity of propagation of the orientational type wave satisfies, 
in this case, the inequali~ 0 < car < 3/,. Separating the real part of (3.9) we obtain 

c,i = ---Jr (aRI,)-1 < 0 

Thus, when the rotational viscosity is absent, the long orientational waves always decay. 

We also note that when 6 ,& = 0 , Eq. (3.5) and the boundary conditions (3.7) together 

imply that CO* = 0, i.e. in this case the orientational waves do not induce the rotation- 

al oscillations of the molecules. 

4, Axir of anlrotropy orthogonal to the plrne of flow, Thesteady 
flow of the layer is described by the following relations : 

?$ zrz Ii (1 - z$ + 6512 -2 [(ch a>-1 (rz - sh n> sh nzz + 

ch nx,l - 8, (n2 ch n>-l (n sh ~2 + j>f 

w” LT= li: [z, - (n ch n)-l (n - sh n) ch WE, - n-l sh nr,] 

p* = (2 - 6WfK% ctg y + Pa (Pb2F1 

K = I”/, + 6gzv2 (1-Z (ch n)-l + (n ch n)-’ sh n (1 - r1~))1-~ 

72 = [6,6,-l (2 - 6s)l”L, 7i, = iqlK (2 - 15~)l’~p ghZ sin y 

The solution (4.1) is written in the coordinate system in which the x1 -axis is directed 
along the line of steepest descent and the xs -axis is directed into the layer. Assuming 

that the small perturbations are independent of the coordinate zs, we linearize the equa- 

tions of motion and the boundary conditions for the layer. Setting 

UP - atl; 
&Cz ’ 

$-;-ag aZ1 , * = rp (sz) Pia @i-W (%2) 

a’ = f(x,) & ~~~-4, uf = &2* (2,) ,ia Gwc*o 

45,’ = L,* (2g) & (x*-q L; = L,* (x2) & (Xrcd) 

we obtain the following equations for the complex amplitudes: 



L2* [x + a* (B, + B,) + iaR6, (vlo - c,)] + iaB, $$ - 

The system (4,3) describes the behavior of the surface perturbations and (4,4) the beha- 
vior of the orientational perturbations, We note that when 6 5 = 0 , the first equation 
of (4.3) becomes the Urr-Sommerfeld equation and the boundary conditions for cp assume 
the form of those in the problem of the stability of flow of a layer of a viscousNewton- 

ian fluid ES]. 
Let us construct the sofution of the boundary value problem f4_ 3) for the case of the 

long waves. Writing rp, f and et in the form of series in powers of 8, we obtain the 
following zero order approximation for the rate of propagation of the surface perturba- 
tions : 

Cl0 = olD (0) + K (ch PZ)-~ [ch n -j- 615n-2 (ch n e 1) - 

6 .gP sh nl - KiTi (n ch n)-” (n - sh n)” 

The next approximation gives the expression for the critical Reynolds number 

R,” I- G (85, 8,) ctg Y 

whme G (65, 3,) is a certain fun&on of the parameters 6 ,and 6,. Thus the critical 

Reynolds number of flow for surface waves depends only on the coefficients of rota- 
ticnat and moment viscosities 6, and 6, and is inde~nde~t of the magnetic field 
strength. This is connected with the fact that under the present orientation of the axis 
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of anisotropy (4.3) implies that the surface perturbation wave is not accompanied by a 

distortion in the oriented structure of the layer. 

Fig. 1 

Numerical computations were performed 
on the computer BESM-4 in order to clarify 

the influence of the parameters 6 5 and 6, 

on R,* and cl0 , and the results are depic- 

ted in Fig. 1. The cures 1-4 correspond 
to the values of &,= 0.01, 0.1, 1, and 10. 

The curves show that the rotational viscosity 
has a destabilizing effect on the flow,while the 

moment viscosity enhances stability. When 

6,=O,wehave R3*=5/actg y whichcorre- 
sponds to the value of the critical Reynolds num- 

ber for a layer of the Newtonian fluid. The 

velocity of propagation of the surface wave 
cl0 increases with increasing 6 5 and decrea- 

ses with increasing &,. Moreover, when 

65 # 0, we always have ct > 3. 

In conclusion we note that the method of 
long wave approximations [6, 71 cannot be 

applied to the system (4.4) nor to the sys- 

terns (2.4) and (3.4)-(3.7). We also cannot obtain for this particular orientation of the 
axis of anisotropy, the sufficient criterion of stability for the orientational waves of the 

type (2.10) and (3.8). For this reason the boundary value problem (4.4) requires addi- 

tional investigation. 
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